BALKONY – ANALIZA NUMERYCZNA PARAMETRÓW CIEPLNO-WILGOTNOŚCIOWYCH W ŚWIETLE NOWYCH WYMAGAŃ CIEPLNYCH

Balconies – numerical analysis of hygrothermal parameters in view of the new thermal requirements

ABSTRAKT → S. 57

W ciągu ostatnich lat w znaczący sposób zostały zaostrzone w Polsce wymagania cieplne dotyczące budynków. W związku z tym niezwykle ważne staje się w procesie projektowym poprawne wykonywanie szczegółowych obliczeń i analiz, które powinny być podstawą wyboru rozwiązań konstrukcyjnych oraz izolacyjnych. Dotyczy to szczególnie złącza, w tym połączenia ściany zewnętrznej z płyta balkonową.

Zgodnie z Rozporządzeniem Ministra Transportu, Budownictwa i Gospodarki Morskiej z dnia 5 lipca 2013 r. zmieniającym rozporządzenie w sprawie warunków technicznych, jakim powinny odpowiadać budynki i ich usytuowanie (1), wprowadzono stopniowe zaostrzanie wymagań w zakresie wartości granicznych współczynnika U [W/(m²·K)]. W odniesieniu do ściany zewnętrznej budynku ustalono, że wartość $U_{C(kmax)}$:

- w latach 2014–2016 ma wynosić 0,25 W/(m²·K),
- w latach 2017–2020 – 0,23 W/(m²·K),
- docelowo od 2021 r. – 0,20 W/(m²·K) (rys. 1).

W rozporządzeniu zmieniającym rozporządzenie w sprawie warunków technicznych, jakim powinny odpowiadać budynki i ich usytuowanie (1), nie sformułowano wymagań w zakresie ograniczania strat ciepła przez złącza budowlane – dotyczących mostków cieplnych. Zostały one sformułowane w wytycznych Narodowego Funduszu Ochrony Środowiska i Gospodarki Wodnej (2) w odniesieniu do energooszczędnych budynków mieszkalnych o standardzie NF40 i NF15, do których budowy lub zakupu z kredytu będzie można otrzymać dopłatę z Narodowego Funduszu Ochrony Środowiska i Gospodarki Wodnej. Wartość graniczne liniowego współczynnika przenikania ciepła $Ψ$ dla mostków cieplnych w „Wytycznych określających podstawowe wymogi niezbędne do osiągnięcia oczekiwanych standardów energetycznych dla budynków mieszkalnych” (2) określono następująco:

- $Ψ_{kmax} = 0,20$ W/(m·K) w odniesieniu do płytką balkonowych w budynkach o standardzie NF40,
- $Ψ_{kmax} = 0,10$ W/(m·K) odnośnie pozostałych mostków cieplnych w budynkach o standardzie NF40,
- $Ψ_{kmax} = 0,01$ W/(m·K) w odniesieniu do mostków cieplnych w budynkach o standardzie NF15.

W celu ograniczenia dodatkowych strat ciepła oraz możliwości obniżenia temperatury na wewnętrznej powierzchni przegrody w miejscu mostka cieplnego należy odpowiednio kształtować ukształtowanie materiałowe w danym złączu przegrody zewnętrznych budynku. Szczególnie należy zwrócić uwagę na poprawne osadzenie okna w ścianie zewnętrznej, połączenie ściany zewnętrznej z płyta balkonowa, połączenie jej ze stropdachem oraz ze ścianą fundamentową i podłogą na gruncie.

W artykule zostanie przedstawiona szczegółowa analiza parametrów złącza ściany zewnętrznej z balkonem w trzech podstawowych wariantach.

CHARAKTERYSTYKA ROZWIĄZAŃ KONSTRUKCYJNO-MATERIAŁOWYCH BALKONÓW

Ukształtowanie rozwiązania konstrukcyjnego balkonu uzależnione jest od wielu czynników:

- obciążenia oddziałującego na konstrukcję,
- wnikania wody opadowej w konstrukcję balkonu,
- bezpieczeństwa użytkowania przez osoby korzystające z balkonu,
- mostków termicznych na styku płyty nośnej ze ścianą.

Głównym problemem w konstruowaniu połączenia balkonów ze ścianą jest zachowanie ciągłości termoizolacji. Jednym ze sposobów minimalizacji mostków termicznych jest sposób oparcia płyty na żelbetowych lub stalowych wspornikach kotwionych w wieńcu lub zastosowanie tzw. nośników izotermicznych.
Łączniki balkonowe ebea KP

Zalety łączników balkonowych ebea KP:
- likwidacja mostków termicznych
- precyzja wykonania
- najwyższej jakości materiały
- trwałość konstrukcji
- łatwy i szybki montaż

BETOMAX Polska S.A.
ul. Góra 2a
26-200 Końskie
tel: +48 41 375 1347
fax: +48 41 375 1348
betomax@betomax.pl

www.betomax.pl
Grubość płyty w balkonie wspornikowym może być stała lub maleć w kierunku od ściany. Płyty główne w płycie wspornikowej umiesz-
BADANIA I OBLICZENIA WŁASNE

Prawidłowe zaprojektowanie przegród zewnętrznych budynku pod względem cieplnym oraz wilgotnościowym wymaga od projektanta rozpatrzenia każdego złącza za pomocą szczegółowych obliczeń numerycznych lub dokładnych kart katalogowych.

W celu przedstawienia parametrów cieplno-wilgotnościowych mostków termicznych przeprowadzono analizę numeryczną przy wykorzystaniu programu komputerowego. Na ocenę parametrów cieplnych i wilgotnościowych danego złącza pozwalają generowane przez program dane wyjściowe, zawierające wyniki w postaci graficznej i tekstowej.

Do obliczeń przyjęto następujące założenia:
» budynki zlokalizowane w III strefie – temp. powietrza zewnętrznego \(T_i = -20^\circ\text{C} \), temp. powietrza wewnętrznego \(T = +20^\circ\text{C} \);
» wartości współczynników przewodzenia ciepła materiałów budowlanych \(\lambda \) [W/(m·K)] przyjęto na podstawie tabel z prac: „Analiza numeryczna parametrów cieplnych wybranych przegród zewnętrznych budynku i ich złączy” [3] oraz „Praktyczna fizyka ciepła budowli” [4];
» wartości współczynnika przenikania ciepła \(U_0 \) [W/(m²·K)] obliczono zgodnie z normą PN-EN ISO 6946:2008 [5];
» modelowanie analizowanych złączy wykonano zgodnie z zasadami sformułowanych w normie PN-EN ISO 10211:2008 [7].

W wyniku obliczeń uzyskano wartości strumieni przepływających przez złącza \(\Phi \) [W], rozkład linii strumieni cieplnych oraz rozkład izoterm, Uzyskane wyniki pozwolą wyznaczyć wartości liniowego współczynnika przenikania ciepła \(\Psi \) [W/(m·K)] według określonych procedur obliczeniowych prezentowanych szczegółowo w pracach: „Analiza numeryczna parametrów cieplnych wybranych przegród zewnętrznych budynku i ich złączy” [3], „Praktyczna fizyka ciepła budowli” [4] oraz „Analiza numeryczna parametrów cieplno-wilgotnościowych złączy ścian zewnętrznych” [8], a także czynniki temperaturowe \(f_{ru} \) [-]. Wyniki obliczeń przedstawiono w TABELI.

ANALIZA WYNIKÓW

Na podstawie obliczeń dokonano analizy parametrów charakteryzujących rozpatrywane warianty połączeń (rys. 6-11) płyty balkonowej ze ścianą zewnętrzną i sformułowano następujące wnioski:
» analizowane złącza ściany zewnętrznej (oryg. gr. izolacji cieplnej 20 cm) spełniają podstawowe wymagania w zakresie izolacyjności cieplnej według rozporządzenia zmieniającego rozporządzenie w sprawie warunków technicznych (1) \(U_0 = 0,171 \text{ W/(m²·K)} < U_{\text{norma}} = 0,20 \text{ W/(m²·K)} \). Jednak połączenie z płytą balkonową generuje dodatkowe straty ciepła określone w postaci parametrów: \(\Phi \) [W], \(L_1^2 \) [W/(m·K)], \(\Psi \) [W/(m)] oraz występuje obniżenie temperatury na wewnętrznej powierzchni przegród \(T_{\text{min}} \) [°C];
» w aspekcie oceny cieplno-wilgotnościowej najbardziej korzystnym rozwiązaniem jest wariant III – połączenie ściany zewnętrznej z płytą balkonową za pomocą łącznika izotermicznego. Uzyskano wartości liniowego współczynnika przenikania ciepła \(\Psi \) [W/(m·K)] na poziomie 0,094 (przy 12-centymetrowej izolacji cieplnej) oraz 0,081 (przy 20-centymetrowej izolacji cieplnej). Poza tym rozwiązanie według wariantu I powoduje obniżenie temperatury

Innowacyjny system montażu balkonów
ŁĄCZNIKI TERMOIZOLACYJNE
IZORABA

Płyta balkonowa z łącznikiem termoizolacyjnym IZORABA

\[\Psi = 0.055 \text{ W/K} \] w miejscu połączenia balkonu ze ścianą i stropem.
PÓDSUMOWANIE I WNIOSKI

Projektowanie połączenia ściany zewnętrznej z płyta balkonową jest zagnieżdżeniem złożonym i wymaga obliczeń i analiz w zakresie konstrukcyjnym i cieplno-wilgotnościowym. Takie szczegółowe obliczenia powinny być podstawą doboru materiałów.

Szczegółowe określenie parametrów cieplnych tego typu złącza za pomocą programu komputerowego pozwala na mierodajne oszacowanie strat ciepła i rozkładu temperatur oraz uniknięcie błędów na etapie wykonywania i eksploatacji budynków.

Przedstawione warianty obliczeniowe nie wyczerpują wszystkich rozwiązań konstrukcyjno-materiałowych złącza ściany zewnętrznej z płytą balkonową. Zasadne jest więc opracowanie kart katalogowych, np. w wypadku styku ściany zewnętrznej z płytą balkonową i otworami okiennymi.

LITERATURA

1. Rozporządzenie Ministra Transportu, Budownictwa i Gospodarki Morskiej z dnia 5 lipca 2013 r. zmieniające rozporządzenie w sprawie warunków technicznych, jakim powinny odpowiadać budynki i ich usytuowanie (DzU z 2013 r., poz. 926).

2. „Wytyczne określające podstawowe wymogi niezbędne do osiągnięcia oczekiwanych standardów energetycznych dla budynków mieszkalnych oraz sposob weryfikacji projektów i sprawdzania wykonanych domów energetycznych", Narodowy Fundusz Ochrony Środowiska i Gospodarki Wodnej; dostępny w internecie: www.nfosgsw.gov.pl.

RYS. 6-7. Wariant I analizowanego złącza – linie strumieni cieplnych – adiabaty (6) oraz rozkłady temperatur – izoterm (7); rys. archiwum autorów

RYS. 8-9. Wariant II analizowanego złącza – linie strumieni cieplnych – adiabaty (8) oraz rozkłady temperatur – izoterm (9); rys. archiwum autorów

RYS. 10-11. Wariant II analizowanego złącza – linie strumieni cieplnych – adiabaty (10) oraz rozkłady temperatur – izoternm (11); rys. archiwum autorów

ABSTRAKT

W artykule dokonano szczegółowej analizy porównawczej parametrów cieplnych złączy dwuwarstwowych ścian zewnętrznych z płytami balkonowymi. Przedstawiono wyniki obliczeń numerycznych wybranych rozwiązań konstrukcyjno-materialowych. Na podstawie otrzymanych wyników parametrów cieplno-wilgotnościowych analizowanych złączy opracowano karty katalogowe niezbędne w projektowaniu przegród z uwzględnieniem wymagań Rozporządzenia Ministra Transportu, Budownictwa i Gospodarki Morskiej z dnia 5 lipca 2013 r. zmieniającego rozporządzenie w sprawie warunków technicznych, jakim powinny odpowiadać budynki i ich usytuowanie.

The article presents a detailed comparative analysis of thermal parameters of two-layer joints between exterior walls and balcony slabs. It also presents the results of numerical calculations of selected structural and material solutions. Based on the obtained results of hydrothermal parameters of the analysed joints, data sheets necessary to design partition walls have been developed, taking into account the Ordinance of the Minister of Transport, Construction and Maritime Economy of 5 July 2013 amending the Ordinance on technical conditions to be met by buildings and their location.

MONIKA DYBOWSKA utworzyła kierunek budownictwa na Wydziale Budownictwa i Inżynierii Środowiska Uniwersytetu Technologiczno-Przyrodniczego w Bydgoszczy, gdzie pracuje w Katedrze Budownictwa Ogólnego i Fizyki Budowlania na stanowisku asystenta. Jej zainteresowania badawcze dotyczą charakterystyki cieplno-wilgotnościowej przegród zewnętrznych i ich złączy.

BADANIA wykonywane z wykorzystaniem, jedynego w Polsce, aparatu do pomiarów współczynnika przewodzenia ciepła w zakresie temperatur: od -160 do +700 °C

Kontakt:
Oddział Zamejski IMBiGS w Katowicach
Centrum Badawcze Materiałów Budowlanych „Izolacja”
Al. W. Korfantego 193 A, 40-157 Katowice
tel.: 32 258-13-73, 32 258-05-72
tel./fax: 32 258-35-53
e-mail: izolacja@imbigs.pl
www.imbigs.pl